

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

(МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ДАГЕСТАНСКИЙ ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР РОССИЙСКОЙ АКАДЕМИИ НАУК

Рабочая программа дисциплины «Вещественный, комплексный и функциональный анализ» по направлению подготовки: 01.06.01 – Математика и механика

Уровень образования: Подготовка кадров высшей квалификации (аспирантура)

Квалификация (степень) выпускника: «Исследователь. Преподаватель-исследователь» Статус дисциплины: вариативная часть обязательных дисциплин

Рабочая программа дисциплины составлена в 2021 году в соответствии с требованиями ФГОС ВО по направлению подготовки 01.06.01 – Математика и механика, квалификация выпускника: «Исследователь. Преподаватель-исследователь».

Разработчики: отдел математики и информатики,

Шарапудинов Т.И. - кандидат физико-математических наук, врио зав. отделом математики и информатики ДФИЦ РАН.

Рабочая программа дисциплины одобрена на заседании Объединенного Ученого совета_________, от <u>24.0 £.</u> 2021 г., протокол № *3*(4)

Согласовано:

Зам. председателя по науке — Д.К. Биарсланов — Д.К. Сфиева

Аннотация

Дисциплина относится к вариативной части блока 1 дисциплин (обязательные дисциплины). Изучение дисциплины определено направленностью программы аспирантуры «Вещественный, комплексный и функциональный анализ».

Содержание дисциплины охватывает круг вопросов, связанных с основными разделами теории функций вещественного переменного, теории функций комплексного переменного и функционального анализа.

Дисциплина нацелена на формирование компетенций выпускника аспирантуры: УК-5, ОПК-2, ПК-1, ПК-2.

1. Область применения и нормативные ссылки

Настоящая программа учебной дисциплины устанавливает минимальные требования к знаниям и умениям обучающегося в аспирантуре по направлению подготовки кадров высшей квалификации и определяет содержание и виды учебных занятий и отчетности.

Программа предназначена для преподавателей, ведущих данную дисциплину, и обучающихся направления подготовки 01.06.01 Математика и механика, изучающих Дисциплину научной специальности.

Программа разработана в соответствии с:

- Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 01.06.01 – Математика и механика (уровень подготовки кадров высшей квалификации), утвержденным приказом Минобрнауки РФ от 30 июля 2014 г. № 866;
- Образовательной программой 01.06.01 Математика и механика (уровень подготовки кадров высшей квалификации);
- Учебным планом по направлению подготовки 01.06.01 Математика и механика, утвержденным в 2018 г.

Объем дисциплины 5 зачетных единиц, в том числе в академических часах по видам учебных занятий:

Семес		Учебные занятия									
тр				в том числе				промежуточ			
	Кс	Контактная работа обучающихся с преподавателем СРС,									
	Bce	Все из них в том									
	го	Лекц	Лаборатор	числе							
		ИИ	ные	экзам							
		занятия занятия ен									
2, 3к	36	36	144	экзамен							

Цели и задачи освоения дисциплины:

Цель дисциплины — формирование у аспирантов углубленных профессиональных знаний в областях теории функций вещественного переменного, теории функций комплексного переменного и функционального анализа.

Задачи дисциплины:

Знать основные понятия и теоремы теории функций вещественного переменного, теории функций комплексного переменного и функционального анализа.

Уметь решать задачи: связанные с мерой, производными и различными видами интегралов; на исследование функциональных рядов; на аналитические функции и их приложения; связанные с топологией, метрикой, нормой.

 $\it Bладеть$ основными методами вещественного, комплексного и функционального анализа.

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы подготовки научно-педагогических кадров в аспирантуре

В результате освоения программы подготовки научно-педагогических кадров в аспирантуре обучающийся должен овладеть следующими результатами обучения по дисциплине (модулю):

Коды компетенции	Результаты освоения ОПОП	Перечь планируемых результатов обучения по дисциплине
	Содержание компетенций	
УК-5	Обладать способностью	Знать основные понятия и теоремы
	планировать и решать	теории функций вещественного
	задачи собственного	переменного, теории функций
	профессионального и	комплексного переменного и
	личностного развития	функционального анализа с тем, чтобы
		использовать не только основную, но и
		дополнительную литературу по
		современному анализу.
		Уметь: обобщать теоремы современного
		анализа и давать их сравнительный
		анализ с другими смежными вопросами;
		пользоваться не только лекционным
		материалом и учебниками по теории
		функций вещественного переменного,
		теории функций комплексного
		переменного и функционального
		анализа, но и научными изданиями,
		интернет-ресурсом.
		Владеть современными
		информационными технологиями при
		изучении свойств функций, при
		исследовании рядов и интегралов, при
		исследовании рядов и интегралов, при
		решении других задач современного
		анализа, при изучении их приложений в
		самой математике и
		естественнонаучных дисциплинах.
ОПК-2	Обладать готовностью к	Знать на достаточно высоком уровне
	преподавательской	вопросы теории функций
	деятельности по основным	вещественного переменного, теории
	образовательным	функций комплексного переменного и
		функционального анализа по основным

	программам высшего	образовательным программам данной
	образования	образовательным программам данной образовательной организации.
	ооразования	= =
		Уметь: оценивать объем материала,
		необходимого для освоения того или
		иного программного вопроса;
		устанавливать связи между различными
		предметными разделами с учетом
		специфики математики.
		Владеть методикой изложения
		основного материала того или другого
		раздела теории функций вещественного
		переменного, теории функций
		комплексного переменного и
		функционального анализа по программе
		данной образовательной организации.
ПК-1	Обладать	Знать: основные понятия и
	фундаментальными	формулировки основных теорем из
	знаниями в области	области современного анализа, включая
	вещественного анализа,	различные виды метрик, различные
	комплексного анализа,	аппараты приближения, различные
	функционального анализа,	виды сходимости последовательностей
	дифференциальных	функций и условия их сходимости.
	уравнений	Уметь: применять основные теоремы
	уравнении	современного анализа для решения
		задач в области самой математики и
		естественнонаучных дисциплин.
		Владеть важнейшими методами
		современного анализа для применения в
		области своей научно-
		исследовательской деятельности.
ПК-2	Обладать способностью	Знать точные определения основных
	строго показать	понятий и строгие формулировки
	математическое	основных теорем современного анализа.
	утверждение,	Уметь проводить логически точные
	сформулировать и	математические рассуждения при
	анализировать научный	доказательстве теорем современного
	результат	анализа, строго соблюдая при этом
		причинно-следственные связи.
		Владеть классическими методами
		доказательства основных принципов
		анализа и важнейших теорем
		современного анализа.
	результат	причинно-следственные связи. Владеть классическими методами доказательства основных принципов анализа и важнейших теорем

В результате изучения дисциплины обучающийся осваивает следующие компетенции:

Компетенция	Код	Дескрипторы – основные	Формы и методы	
	ПО	признаки освоения	обучения,	
	ΦΓΟС	(показатели достижения	способствующие	
		результата)	формированию и	
			развитию	
			компетенции	

Универсальные	УК-5	Знает понятия определения и	Последовательное
1		утверждения, составляющие	изучение тем по
		основы современного	модулям в сочетании
		анализа, что позволяет	со сдачей
		использовать в научных	коллоквиумов по
		исследованиях как основную	каждому модулю
		литературу, так и	
		дополнительные научные	
		издания.	
		Умеет выявлять общие	
		признаки и получать более	
		общие теоремы в области	
		своих научных	
		исследований; анализировать	
		с точки зрения	
		существенности:	
		необходимости и	
		достаточности полученных	
		условий истинности	
		доказываемое утверждение;	
		свободно пользоваться	
		научным изданиями,	
		интернет-ресурсом.	
		Владеет навыками	
		использования современных	
		информационных	
		технологий в исследованиях	
		в области современного	
		анализа и при изучении	
		приложений в других	
		областях науки.	
Общепрофессиональные	ОПК-	Знает материал по разделам	Последовательное
	2	теории функций	изучение тем по
		вещественного переменного,	модулям в сочетании
		теории функций	со сдачей
		комплексного переменного и	коллоквиумов по
		функционального анализа,	каждому модулю
		необходимый для	
		преподавания этих	
		дисциплин на уровне	
		основных образовательных	
		программ данной	
		образовательной	
		организации.	
		Умеет: выбирать	
		необходимый материал для	
		освоения программы	
		учебной дисциплины;	
		устанавливать	
		межпредметные связи.	
		Владеет навыками	
		изложения основных	

		разделов теории функций вещественного переменного, теории функций комплексного переменного и функционального анализа по программе данной образовательной организации.	
Профессиональные	ПК-1	Знает в достаточном объеме базовый материал по курсам вещественного, комплексного и функционального анализа. Умеет: применять основные методы современного анализа для научных исследований в области самой математики и в приложениях. Владеет навыками научных исследований в области современного анализа и базовыми методами теории функций вещественного, комплексного и функционального анализа.	Последовательное изучение тем по модулям в сочетании со сдачей коллоквиумов по каждому модулю
	ПК-2	Знает строгие определения основных понятий и полные формулировки важнейших достижений на современном этапе в областях теории функций вещественного, комплексного и функционального анализа. Умеет проводить логически корректные математические рассуждения при доказательстве основных теорем современного анализа. Владеет классическими и современными методами доказательства важнейших теорем из области современного анализа.	Последовательное изучение тем по модулям в сочетании со сдачей коллоквиумов по каждому модулю

3. Место дисциплины в структуре ОПОП

Изучение данной дисциплины базируется на следующих дисциплинах, прохождения практик:

• Ортогональные системы функций

- Элементы теории приближений
- Экстремальные задачи теории приближения
- Некоторые вопросы теории интерполирования функций
- Педагогическая практика
- Научно-исследовательская деятельность
- Подготовка научно-квалификационной работы

Для освоения учебной дисциплины, обучающиеся должны владеть хорошими знаниями основ классических университетских курсов математического анализа, дифференциальных уравнений, комплексного анализа, функционального анализа и компетенциями: YK - 5; $O\Pi K - 2$; $\Pi K - 1$; $\Pi K - 2$.

Основные положения дисциплины должны быть использованы в дальнейшем при изучении следующих за ней дисциплин:

- Научно-исследовательская деятельность
- Подготовка научно-квалификационной работы
- Подготовка к сдаче и сдача государственного экзамена
- Представление научного доклада об основных результатах подготовленной научно-квалификационной работы

4. Объем, структура и содержание дисциплины

- 4.1. Объем дисциплины составляет 5 зачетных единиц, 180 академических часов.
- 4.2. Структура дисциплины:

_	Семестр	Неделя семестра	Аудиторные занятия, в том числе				ra	Формы
1 B IZ								текущего
Названия разделов тем дисциплины			лекции	практ. занятия	лабор. работы	контр. сам. раб.	Самостоят, работа	контроля успеваемости (по неделям семестра) Форма промежуточной аттестации (по семестрам)
Модуль 1. Мера, прог	ізводна	ія и ин	теграл					
Всего по модулю 1	2κ		6				30	коллоквиум
1. Меры, измеримые			3					
функции, интеграл								
2. Неопределенный			3					
интеграл Лебега и								
теория								
дифференцирования								
Модуль 2. Ряды функ	щий							
Всего по модулю 2	2κ		6				30	коллоквиум
1. Пространства			3					
суммируемых								
функций и								
ортогональные ряды								
2.			3					
Тригонометрические								

ряды.							
Преобразование							
Фурье							
Модуль 3. Комплекси	т Ный ан						
Всего по модулю 3	2 _K		12			24	коллоквиум
1. Интегральные			4				,
представления							
аналитических							
функций							
2. Ряды			4				
аналитических							
функций. Вычеты							
3. Конформные			2				
отображения							
4. Гармонические			2				
функции							
Модуль 4. Функцион	альный	ї анали	3				
Всего по модулю 4	2к		12			24	коллоквиум
1. Метрические и			2				,
топологические							
пространства							
2. Нормированные и			2				
топологические							
линейные							
пространства							
3. Линейные			2				
функционалы и							
линейные операторы							
4. Гильбертовы			2				
пространства и							
линейные операторы							
в них							
5.			2				
Дифференциальное							
исчисление в							
линейных							
пространствах							
6. Обобщенные			2				
функции		<u> </u>			<u> </u>		
Модуль 5. Промежу	почная	ammed	стация	!			
Экзамен	3к						экзамен
ИТОГО			36			108	36

4.3. Содержание дисциплины, структурированное по темам (разделам)

ЛЕКЦИИ

Модуль 1. Мера, производная и интеграл

Тема 1. Меры, измеримые функции, интеграл

Аддитивные функции множеств (меры), счетная аддитивность мер. Конструкция лебеговского продолжения. Измеримые функции. Сходимость функций по мере и почти всюду. Теоремы Егорова и Лузина. Интеграл Лебега. Предельный переход под знаком интеграла. Сравнение интегралов Лебега и Римана. Прямые произведения мер. Теорема Фубини. ([1], гл. V; [Д1], гл. 1–4)

Тема 2. Неопределенный интеграл Лебега и теория дифференцирования

Дифференцируемость монотонной функции почти всюду. Функции с ограниченным изменением (вариацией). Производная неопределенного интеграла Лебега. Задача восстановления функции по ее производной. Абсолютно непрерывные функции. Теорема Радона-Никодима. Интеграл Стилтьеса. ([1], гл. VI; [Д1], гл. 5)

Модуль 2. Ряды функций

Тема 3. Пространства суммируемых функций и ортогональные ряды

Неравенства Гельдера и Минковского. Пространства L_p , их полнота. Полные и замкнутые системы функций. Ортонормированные системы в L_2 и равенство Парсеваля. Ряды по ортогональным системам; стремление к нулю коэффициентов Фурье суммируемой функции в случае равномерно ограниченной ортонормированной системы. ([1], гл. VII; [5], гл. VII)

Тема 4. Тригонометрические ряд. Преобразование Фурье

Условие сходимости ряда Фурье. Представление функций сингулярными интегралами. Единственность разложения функции в тригонометрический ряд. Преобразование Фурье интегрируемых и квадратично интегрируемых функций. Свойство единственности для преобразования Фурье. Теорема Планшереля. Преобразование Лапласа. Преобразование Фурье-Стилтьеса. ([1], гл. VIII, §§ 1–7)

Модуль 3. Комплексный анализ

Тема 5. Интегральные представления аналитических функций

Интегральная теорема Коши и ее обращение (теорема Мореры). Интегральная формула Коши. Теорема о среднем. Принцип максимума модуля. Лемма Шварца. Интеграл типа Коши, его предельные значения. Формулы Сохоцкого. ([5], гл. IV)

Тема 6. Ряды аналитических функций. Особые точки. Вычеты

Равномерно сходящиеся ряды аналитических функций; теорема Вейерштрасса. Представление аналитических функций степенными рядами, неравенства Коши. Нули (однозначного характера). Теорема Коши о вычетах. Вычисление интегралов с помощью вычетов. Принцип аргумента. Теорема Руше. Приближение аналитических функций многочленами. ([5], гл. V–VII)

Тема 7. Конформные отображения

Конформные отображения, осуществляемые элементарными функциями. Принцип сохранения области. Критерии однолистности. Теорема Римана. Теоремы о соответствии границ при конформных отображениях. ([5], гл. III, § 1, 3, гл. XII, §§ 1, 2, 6, 7)

Тема 8. Гармонические функции

Гармонические функции, их связь с аналитическими. Бесконечная дифференцируемость. Теорема о среднем и принцип максимума. Теорема единственности. Задача Дирихле. Формула Пуассона для круга. ([6])

Модуль 4. Функциональный анализ

Тема 9. Метрические и топологические пространства

Сходимость последовательностей в метрических пространствах. Полнота и пополнение метрических пространств. Сепарабельность. Принцип сжимающих отображений. Компактность множеств в метрических и топологических пространствах. ([1], гл. II)

Тема 10. Нормированные и топологические пространства

Линейные пространства. Выпуклые множества и выпуклые функционалы, теорема Бахана-Хана. Отделимость выпуклых множеств. Нормированные пространства. Критерии компактности множеств в пространствах C и L_p . Евклидовы пространства. Топологические линейные пространства. ([1], гл. III)

Тема 11. Линейные функционалы и линейные операторы

Непрерывные линейные функционалы. Общий вид линейных ограниченных функционалов на основных функциональных пространствах. Сопряженное пространство. Слабая топология и слабая сходимость. Линейные операторы и сопряженные к ним. Пространство линейных ограниченных операторов. Спектр и резольвента. Компактные (вполне непрерывные) операторы. Теоремы Фредгольма. ([1], гл. IV, §§ 1–3, 5, 6)

Тема 12. Гильбертовы пространства и линейные операторы в них

Изоморфизм сепарабельных бесконечномерных гильбертовых пространств. Спектральная теория ограниченных операторов в гильбертовых пространствах. Функциональное исчисление для самосопряженных операторов и спектральная теорема. Диагонализация компактных самосопряженных операторов. Неограниченные операторы. ([8], гл. VI–VIII)

Тема 13. Дифференциальное исчисление в линейных пространствах

Дифференцирование в линейных пространствах. Сильный и слабый дифференциалы. Производные и дифференциалы высших порядков. Экстремальные задачи для дифференцируемых функционалов. Метод Ньютона. ([1], гл. X)

Тема 14. Обобщенные функции

Регулярные и сингулярные обобщенные функции. Дифференцирование, прямое произведение и свертка обобщенных функций. Обобщенные функции медленного роста; их преобразование Фурье. Преобразование Лапласа обобщенных функций (операционное исчисление). Структура обобщенных функций с компактным носителем. ([1], гл. IV, § 4, гл. VIII, § 8; [7], гл. II)

5. Оценочные средства для текущего контроля и аттестации обучающегося

Тематика заданий текущего контроля

Примерный перечень тем к коллоквиуму

- Тема 1. Меры, измеримые функции, интеграл
- Тема 2. Неопределенный интеграл Лебега и теория дифференцирования
- Тема 3. Пространства суммируемых функций и ортогональные ряды
- Тема 4. Тригонометрические ряды. Преобразование Фурье
- Тема 5. Интегральные представления аналитических функций
- Тема 6. Ряды аналитических функций. Особые точки. Вычеты
- Тема 7. Конформные отображения
- Тема 8. Гармонические функции
- Тема 9. Метрические и топологические пространства
- Тема 10. Нормированные и топологические линейные пространства
- Тема 11. Линейные функционалы и линейные операторы
- Тема 12. Гильбертовы пространства и линейные операторы в них
- Тема 13. Дифференциальное исчисление в линейных пространствах
- Тема 14. Обобщенные функции

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Основная литература

- 1. Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа Москва: Физматлит, 2012 Колмогоров, А. Н. Элементы теории функций и функционального анализа / А. Н. Колмогоров, С. В. Фомин. 7-е изд. Москва: Физматлит, 2012. 573 с. (Классический университетский учебник). ISBN 978-5-9221-0266-7; то же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=82563.
- 2. Натансон И. П. Теория функций вещественных переменной: учебное пособие Москва: Наука, 1974 Натансон, И. П. Теория функций вещественной переменной: учебное пособие / И. П. Натансон. Изд. 3-е. Москва: Наука, 1974. 480 с.: ил.; то же [Электронный ресурс].
 - URL: http://biblioclub.ru/index.php?page=book&id=459802.
- 3. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. В 3 т. Т. 3 Москва: Физматлит, 2002 Фихтенгольц, Г. М. Курс дифференциального и интегрального исчисления: в 3-х т. / Г. М. Фихтенгольц: ред. А. А. Флоринского. Изд. 6-е (1-е изд. 1949 г.). Москва: Физматлит, 2002. Т. 3. 727 с. ISBN 5-9221-0155-2; то же [Электронный ресурс].
 - URL: http://biblioclub.ru/index.php?page=book&id=83196.
- 4. Никольский С. М. Курс математического анализа. Т. II. М.: Наука, 1975 (Физматлит, 2001).
- 5. Привалов И. И. Введение в теорию функций комплексного переменного. М.: Наука, 1977 (Лань, 2009).

- 6. Шабат Б. В. Введение в комплексный анализ. Ч. 1. М.: Наука, 1976 (Физматлит, 2004).
- 7. Владимиров В. С. Уравнения математической физики. М.: Наука, 1976 (1981).
- 8. Рид М., Саймон Б. Методы современной математической физики, т. 1. Функциональный анализ. М.: Мир, 1976.

6.2. Дополнительная литература

- Д1. Действительный анализ в задачах: учебное пособие Москва: Физматлит, 2005 Действительный анализ в задачах: учебное пособие / П. Л. Ульянов, А. Н. Бахвалов, М. И. Дьяченко и др. Москва: Физматлит, 2005. 416 с. ISBN 5-9221-0595-7; то же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=69331.
 - Д2. Евграфов М. А. Аналитические функции. М.: Наука, 1991.
 - Д3. Зорич В. А. Математический анализ. Т. II. М.: Наука, 1984.
- Д4. Люстерник Л. А., Соболев В. И. Элементы функционального анализа. М.: Наука, 1965.

6.3. Программное обеспечение

Для успешного освоения дисциплины, обучающийся использует следующие программные средства:

- MatLab
- Mathcad
- Maple

6.4. Базы данных, информационно-справочные и поисковые системы

- 1. http://elibrary.ru eLIBRARY Научная электронная библиотека
- 2. http://window.edu.ru/window/catalog?p_rubr=2.2.74.12 Единое окно доступа к электронным ресурсам
- 3. http://springerlink.com/mathematics-and-statistics/ платформа ресурсов издательства Springer

7. Материально-техническое обеспечение дисциплины

Для проведения занятий в активной и интерактивной форме и самостоятельной работы аспирантов используются компьютеры с соответствующим программным обеспечением, мультимедийные проекторы, интерактивные экраны, аудио и видео аппаратура.

8. Образовательные технологии

В соответствии с различными видами учебных занятий предусматриваются следующие образовательные технологии:

- традиционные и интерактивные лекции с дискурсивной практикой обучения;
- семинары и коллоквиумы, на которых обсуждаются основные проблемы, освещенные в лекциях и сформулированные в домашних заданиях;

- письменные и устные домашние задания, подготовка докладов и рефератов по программе самостоятельной работы;
- участие в научно-методологических семинарах, коллоквиумах и конференциях;
- консультации преподавателя;
- самостоятельная работа аспиранта, в которую входит освоение теоретического материала, подготовка к семинарским занятиям с использованием интернета и электронных библиотек.